Isotopic Study of NO_x Decomposition over Cu- or Co-Exchanged ZSM-5 Zeolite Catalysts

Yun-feng Chang¹ and Jon G. McCarty

SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025

Received January 29, 1996; revised August 12, 1996; accepted August 22, 1996

The decomposition of NO_x over Cu^{2+} and Co^{2+} -exchanged ZSM-5 zeolites was investigated using isotope labeled ¹⁵N¹⁸O and temperature-programmed desorption (TPD) technique. We found that formation of NO₂ intermediates is responsible for enhancing the rate of NO_x decomposition when the catalysts were treated in both ¹⁵N¹⁸O and O₂. Co-adsorption of ¹⁵N¹⁸O and O₂ led to a dramatic increase in the amount of NO_x and O_2 adsorbed. The surface NO_x species decomposed or desorbed to form NO, O₂, N₂, and NO₂ during the TPD. This results in formation of equal amounts of ¹⁵N¹⁶O and ¹⁵N¹⁸O in NO products and 50% ¹⁵N¹⁶O¹⁸O, 25% ¹⁵N¹⁶O₂, and 25% ¹⁵N¹⁸O₂ in NO₂ products. In the absence of O₂, formation of N₂O was observed at <300°C but not NO₂. For Cu-NaZSM-5, its N₂O products are exclusively ¹⁵N₂¹⁸O, suggesting that lattice oxygen is not involved in the formation of N₂O (it is derived solely from $^{15}N^{18}O$) and the isotope exchange between ¹⁵N₂¹⁸O with the zeolite lattice oxygen (¹⁶O) is not significant. However, for Co-ZSM-5, formation of either N₂O or NO₂ is negligible with ¹⁵N¹⁸O treatment. Treatment in both ¹⁵N¹⁸O and O₂ resulted in some formation of N₂O, consisting of equal amounts of ¹⁵N₂¹⁶O and ¹⁵N₂¹⁸O, suggesting either isotopic exchange occurred between N₂O and lattice oxygen, or between NO and lattice oxygen, or formation of N₂O involved lattice oxygen. Except that the low-temperature activity for N₂ formation for Cu-NaZSM-5 treated in ¹⁵N¹⁸O alone is due to formation of N₂O, the majority of activity for N₂ formation is due to formation of NO₂ intermediates. The main difference between Cu-NaZSM-5 and Co-NaZSM-5 is that for Cu-NaZSM-5, in addition to the low-temperature activity shared by Co-NaZSM-5, it showed significant activity for nitric oxide decomposition at high temperatures (>360°C) while Co-NaZSM-5 showed little. A TOF of 2.88×10^{-4} s⁻¹ · Cu⁻¹ for Cu-NaZSM-5 at 122° C and at 0.1 vol.% 15 N¹⁸O and 0.4 vol.% O₂ is even higher than $\sim 2 \times 10^{-4} \text{ s}^{-1} \cdot \text{Cu}^{-1}$ reported in the literature at >350°C, but at a much lower temperature. In terms of N₂ formation, Co-NaZSM-5 is about 2-3 times more active than Cu-NaZSM-5 at low temperatures (<200°C). For Cu-NaZSM-5, its activity for NO₂ decomposition is approximately 4 times higher than that for NO at 320-370°C. Co-NaZSM-5 does not show any significant activity for NO decomposition but its activity for NO₂ decomposition is comparable to Cu-NaZSM-5. © 1997 Academic Press, Inc.

INTRODUCTION

Among the NO_x abatement strategies, direct decomposition of NO_x is preferred because no reductants are required, thus eliminating possible pollutants derived from reactions involving reducing reagents and thus simplifying the operation. Normally, direct decomposition of NO requires higher temperature than reduction by using reducing reagents. However, decomposition of NO was achieved at 400°C over Cu–ZSM-5 zeolite (1). Since then tremendous research efforts have been devoted to understanding the mechanism of NO_x activation aiming at finding more active catalysts because Cu–ZSM-5 is not sufficiently active for practical use and has stability problems.

The temperature-programmed desorption (TPD) of adsorbed NO on Co-ferrierite showed (2) in addition to the desorption of NO, a major peak of N2 at 40-100°C and a peak of N₂O at 200-300°C, but no desorption of O₂. However, a TPD carried out in the flow of 10% O2 in He showed a similar peak for N₂ but disappearance of the N₂O peak. It was believed that formation of N₂O indicates disproportionation of NO to N2O and NO2 though NO2 was not observed as a major desorption product, and the lack of N2O as a desorption product when O₂ is present in the carrier gas stream suggests that the O₂ suppresses the disproportionation reaction. In another TPD study (3), the formation of N₂O₃-like intermediates by co-adsorbing NO and NO₂ on Na-ZSM-5, Na-Y, and Cu-ZSM-5 zeolites was proposed. These results strongly indicate that O_2 plays an important role in the adsorption and decomposition of NO on zeolite catalysts. To address the involvement of O₂ in the decomposition of NO, its interaction with zeolite lattice oxygen, and its role in the formation of NO_x intermediates, isotope exchange and temperature-programmed experiments were conducted. The two most frequently investigated zeolite catalysts, Cu-ZSM-5 and Co-NaZSM-5, were chosen

¹ To whom correspondence should be addressed. Present address: ABB Lummus Global, Inc., Technology Development Center, 1515 Broad St. Bloomfield, NJ 07003.

to compare their NO_x adsorption and decomposition behaviors.

EXPERIMENTAL

Catalysts

Cu–NaZSM-5 and Co–NaZSM-5 were prepared by refluxing a mixture containing Na–ZSM-5 (molar ratio of SiO₂ to Al₂O₃: 60) zeolite powder and 1.0 M Co(NO₃)₂ (Aldrich, AR reagent) or Cu(NO₃)₂ (Aldrich, AR reagent) aqueous solution at a ratio of 1 g zeolite to 20 cm³ solution, respectively. The parent ZSM-5 zeolite contains 560 μ mol · g⁻¹ exchangeable protons determined by exhaustive ion exchange using 1.0 MNaNO₃ solution at room temperature. After the exchange, the solid was washed and dried, then calcined at 550°C for 6 h. Elemental analysis showed that Co–NaZSM-5 catalyst contained 1.6 wt% Co, which is equivalent to replacing 97% of the Na⁺; and Cu–NaZSM-5 contained 1.9 wt% Cu, which represents 107% of the total ion exchange capacity of the parent material.

Materials

Isotope double-labeled $^{15}N^{18}O$ (1 vol.% $^{15}N^{18}O$, 1 vol.% Ar, and 98 vol.% He) was obtained from ISOTECH, and O₂ (4 vol.% O₂, 1 vol.% Ar, and 95 vol.% He) and high-purity helium (99.999 vol.% He) were obtained from Liquid Carbonic.

Temperature-Programmed Experiments

The TPD experiments were conducted in a quartz reactor. The catalyst sample (200 mg) was pretreated in 2 vol.% O_2 flowing at 100 cm³ · min⁻¹ before adsorption of ¹⁵N¹⁸O or $^{15}N^{18}O$ and $^{16}O_2$ was carried out. It was heated to 600°C and then held at this temperature for 60 min before being cooled to 40° C. The adsorption of $^{15}N^{18}O$ or the co-adsorption of ¹⁵N¹⁸O and O₂ was conducted for 30 min at 40°C in a 100 cm³ · min⁻¹ flowing stream of 0.2 vol.% $^{15}N^{18}O$ or 0.1 vol.% ¹⁵N¹⁸O and 0.4 vol.% O₂, respectively. The treated catalyst was purged in a stream of He at 100 cm³ \cdot min⁻¹ for 30 min before TPD was begun. The He flow used during TPD was 40 cm³ \cdot min⁻¹. The effluent was monitored by an on-line mass spectrometer (Electronic Associates, Inc.) for the following species: m^+/e : 30 for ${}^{15}N_2$, 31 for ${}^{15}N$ ${}^{16}O$, 32 for ¹⁶O₂, 33 for ¹⁵N¹⁸O, 34 for ¹⁶O¹⁸O, 36 for ¹⁸O₂, 40 for Ar, 46 for ¹⁵N₂¹⁶O, 47 for ¹⁵N¹⁶O₂, 48 for ¹⁵N₂¹⁸O, 49 for ¹⁵N¹⁶O¹⁸O, and 51 for ¹⁵N¹⁸O₂. The mass spectrometer was calibrated with N₂, N₂O, NO, O₂, Ar, and NO₂. Also, under our mass spectrometer conditions, NO₂ generates a very low amount of molecular ion NO_2^+ . As a result of this, when we presented NO₂ results, a large multiplying factor was used to convert the NO₂ signal to actual levels of NO₂. This made the actual levels of NO₂ have poor signal-to-noise ratio.

We were aware of previous work on gas phase reaction of NO with O₂ to form NO₂. Generally speaking, most of NO₂ formation is due to contact of the mixture of NO and O₂ with stainless-steel metal surfaces. In our experiments, we took precautions to reduce possible NO₂ formation by mixing NO and O₂ just upstream of the quartz reactor to minimize gas phase reaction. We also conducted blank experiments by passing the reaction gas stream through the empty quartz reactor. We found that the amount of NO₂ or N₂O₄ is the result of contact with catalyst surface.

RESULTS

During TPD, all possible isotope products involved using $^{15}N^{18}O$ and O_2 were monitored. However, only the critical data are presented here to elucidate the formation of different NO_x isotope species, and O_2 isotope species.

Figures 1 and 2 show the desorption of nitric oxide from Cu-NaZSM-5 and Co-NaZSM-5, after being treated either in ¹⁵N¹⁸O or in both ¹⁵N¹⁸O and O₂, respectively. There appear to be two distinct desorption regions, <280°C and > 280°C. It should be pointed out that caution must be taken in interpreting the TPD data obtained using mass spectrometry operated under high ionization energy when it deals with NO and NO₂ at the same time. In our experiments, we found that NO₂ contributes substantially to NO due to its fragmentation. Therefore, the "NO" signals recorded by mass spectrometer is the sum of that from nitric oxides (15N16O and 15N18O) and that from nitrogen dioxides (¹⁵N¹⁶O₂, ¹⁵N¹⁶O¹⁸O, and ¹⁵N¹⁸O₂). To get the actual nitric oxide signal, contributions from NO₂ are subtracted from the total "NO" signal. In this regard, ${}^{15}N^{16}O_2$ contributes twice as much as ${}^{15}N^{16}O^{18}O$ for the signal of ${}^{15}N^{16}O$. Likewise, ¹⁵N¹⁸O₂ contributes twice as much as ¹⁵N¹⁶O¹⁸O

FIG. 1. Desorption of NO from Cu–NaZSM-5 zeolite during TPD after being treated in either 0.2 vol.% $^{15}N^{18}O$ or 0.1 vol.% $^{15}N^{18}O$ and 0.4 vol.% O_2 (100 cm³ · min⁻¹) at 40°C for 30 min; catalyst mass: 0.2 g; flow of He: 40 cm³ · min⁻¹; ramp rate: 30°C · min⁻¹.

FIG. 2. Desorption of NO from Co–NaZSM-5 zeolite during TPD after being treated in either 0.2 vol.% $^{15}N^{18}O$ or 0.1 vol.% $^{15}N^{18}O$ and 0.4 vol.% O_2 (100 cm³ · min⁻¹) at 40°C for 30 min; catalyst mass: 0.2 g; flow of He: 40 cm³ · min⁻¹; ramp rate: 30°C · min⁻¹.

for $^{15}N^{18}O.$ $^{15}N^{16}O^{18}O$ contributes to both $^{15}N^{16}O$ and $^{15}N^{18}O.$

The desorption of ${}^{15}N^{18}O$ -treated Cu–NaZSM-5 occurred at 80–400°C, giving a broad desorption band at 100– 350°C. Treating the same catalyst in both ${}^{15}N^{18}O$ and O_2 led to great enhancement in the amount of NO adsorbed at high temperatures (>300°C) but seemed to have little effect on the broad peak in the low-temperature region. The NO peak at 370°C was increased by a factor of 6.

For Co–NaZSM-5 (Fig. 2), the TPD of $^{15}N^{18}O$ treatment shows at least three NO desorption peaks, at 130, 210, and 370°C. Treating in both $^{15}N^{18}O$ and O_2 led to a significant increase in the amount of NO adsorbed at 280–400°C and disappearance of the peak at ~210°C. In addition, it also results in shifting the high-temperature peak to a lower temperature by 40–50°C.

The isotope compositional change of desorbed NOs during the TPD is given in Figs. 3a and 3b for Cu–NaZSM-5 treated in 0.2 vol.% $^{15}N^{18}O$ or in both 0.1 vol.% $^{15}N^{18}O$ and 0.4 vol.% O_2 , respectively. When treated in $^{15}N^{18}O$ alone, $^{15}N^{18}O$ is the predominant desorption product at $<350^{\circ}C$. Desorption of $^{15}N^{16}O$ was insignificant until reaching 300°C. When treated in both $^{15}N^{18}O$ and O_2 , the desorption of $^{15}N^{18}O$ and $^{15}N^{16}O$ has virtually the exact same characteristics and equal amounts with respect to the two corresponding peaks at 140 and 350°C.

The product distribution during TPD of Co-NaZSM-5 treated in either ${}^{15}N^{18}O$ or ${}^{15}N^{18}O$ and O_2 are given in Figs. 4a and 4b, respectively. Unlike Cu-NaZSM-5, treating in ${}^{15}N^{18}O$ resulted in formation of a significant amount of ${}^{15}N^{16}O$ at temperatures 100–300°C. Despite this, ${}^{15}N^{18}O$ is the major desorption product until the temperature reached 300°C. Above this temperature, there is more ${}^{15}N^{16}O$ desorbed than ${}^{15}N^{18}O$. Similar to Cu-NaZSM-5, the TPD of ${}^{15}N^{18}O$ and O_2 treatment led to desorption of equal

amounts of ${}^{15}N{}^{16}O$ and ${}^{15}N{}^{18}O$. The desorption characteristics of the two products are identical, suggesting that they may come from the same intermediate.

The formation of N_2 during the TPD of Cu–ZSM-5 treated either in ${}^{15}N^{18}O$ or in both ${}^{15}N^{18}O$ and O_2 is given in Fig. 5. This clearly shows that formation of N_2 occurs at temperature above 70°C. However, the amount of N_2 formed in the ${}^{15}N^{18}O$ -treated catalyst is much less than that treated in both ${}^{15}N^{18}O$ and O_2 . Most of N_2 is formed at below 300°C in the former, while there are two peaks, at 130 and 335°C, in the latter.

Figure 6 gives the formation of N_2 during TPD of Co–NaZSM-5 treated in 0.2 vol.% $^{15}N^{18}O$ or in 0.1 vol.% $^{15}N^{18}O$ and 0.4 vol.% O_2 . Formation of N_2 is negligible when reacted in $^{15}N^{18}O$ alone. However, when treated in both $^{15}N^{18}O$ and O_2 , formation of N_2 has drastically increased, especially at temperatures below 400°C.

Figures 7a and 7b give the formation of N_2O and NO_2 from Cu–NaZSM-5 during the TPD. For the $^{15}N^{18}O$ -treated

FIG. 3. Desorption of different NO isotope products from Cu–ZSM-5 zeolite catalyst during TPD after being treated in (a) 0.2 vol.% $^{15}N^{18}O$ (100 cm³ · min⁻¹) and (b) 0.1 vol.% $^{15}N^{18}O$ and 0.4 vol.% O_2 (100 cm³ · min⁻¹) at 40°C for 30 min; catalyst mass: 0.2 g; flow of He: 40 cm³ · min⁻¹; ramp rate: $30^{\circ}C \cdot min^{-1}$.

FIG. 4. Desorption of different NO isotope products from Co–ZSM-5 zeolite catalyst during TPD after being treated in (a) 0.2 vol.% $^{15}\mathrm{N^{18}O}$ (100 cm³ · min⁻¹) and (b) 0.1 vol.% $^{15}\mathrm{N^{18}O}$ and 0.4 vol.% O_2 (100 cm³ · min⁻¹) at 40°C for 30 min; catalyst mass: 0.2 g; flow of He: 40 cm³ · min⁻¹; ramp rate: 30°C · min⁻¹.

catalyst, no desorption of NO₂ was observed; ${}^{15}N_2{}^{18}O$ was the exclusive N₂O product. It was formed at temperature $\leq 250^{\circ}C$. When treated in both ${}^{15}N{}^{18}O$ and O₂, large amounts of NO₂ were formed but no N₂O was detected. There are two NO₂ peaks, at 260 and 330°C.

The formation of N₂O and NO₂ during the TPD of Co–NaZSM-5 treated in both ¹⁵N¹⁸O and O₂ are given in Figs. 8a and 8b, respectively. Desorption of N₂O mostly occurred at temperatures below 300°C. The desorptions of ¹⁵N₂¹⁸O and ¹⁵N₂¹⁶O follow the same pattern and their amounts are virtually the same. There is also a single broad NO₂ peak at temperatures <300°C. Three NO₂ products are formed, ¹⁵N¹⁸O¹⁶O, ¹⁵N¹⁸O₂, and ¹⁵N¹⁶O₂. Their desorption characteristics are identical. The amount of ¹⁵N¹⁸O₂ is equal to that of ¹⁵N¹⁶O₂, and each represents 25% of the total; the remaining 50% is a mixed isotope product, ¹⁵N¹⁸O¹⁶O. When treated in ¹⁵N¹⁸O alone, neither N₂O nor NO₂ are formed.

Formation of O_2 during the TPD of Cu–NaZSM-5 treated in ${}^{15}N^{18}O$ is shown in Fig. 9a. Significant desorption of O_2 oc-

FIG. 5. Formation of $^{15}N_2$ from Cu–ZSM-5 zeolite catalyst during TPD after being treated in either 0.2 vol.% $^{15}N^{18}O$ or 0.1 vol.% $^{15}N^{18}O$ and 0.4 vol.% O_2 (100 cm³ \cdot min⁻¹) at 40°C for 30 min; catalyst mass: 0.2 g; flow of He: 40 cm³ \cdot min⁻¹; ramp rate: 30°C \cdot min⁻¹.

curred at temperatures above 300°C when treated in ¹⁵N¹⁸O alone (Fig. 9a). All three isotope O₂ products are formed, but ${}^{16}O_2$ is predominant, followed by ${}^{16}O^{18}O$. The amount of ¹⁸O₂ formed is very small. Formation of O₂ during the TPD of Cu-NaZSM-5 treated in ¹⁵N¹⁸O and O₂ is given in Fig. 9b. It shows two desorption peaks, at 125 and 350°C. The low-temperature peak consists exclusively of ¹⁶O₂, while the high-temperature peak contains all three isotope products, their quantities decreasing in the order ${}^{16}O_2$, ${}^{16}O^{18}O$, and ¹⁸O₂. The amount of O₂ desorbed from the ¹⁵N¹⁸O-and-O₂-treated catalyst is more than one order of magnitude greater than that treated in ¹⁵N¹⁸O alone. To highlight the importance of treatment gas stream on the composition of adsorbed NO_x intermediates, the desorption results are presented in Table 1 as NO, N₂O, NO₂, and O₂ at <280°C and >280°C.

FIG. 6. Formation of $^{15}N_2$ from Co–ZSM-5 zeolite catalyst during TPD after being treated in either 0.2 vol.% $^{15}N^{18}O$ or 0.1 vol.% $^{15}N^{18}O$ and 0.4 vol.% O_2 (100 cm³ \cdot min⁻¹) at 40°C for 30 min; catalyst mass: 0.2 g; flow of He: 40 cm³ \cdot min⁻¹; ramp rate: 30°C \cdot min⁻¹.

Figure 9c compares the O_2 desorption profiles of Cu–NaZSM-5 treated in different gas streams, in 1 vol.% O_2 , in 0.2 vol.% $^{15}N^{18}O$, and 0.1 vol.% $^{15}N^{18}O$, and 0.5 vol.% O_2 . It clearly shows that the treatment in O_2 only leads to adsorption of a small amount of O_2 .

Formation of O₂ during the TPD of Co–NaZSM-5 treated in 0.2 vol.% ¹⁵N¹⁸O or in both 0.1 vol.% ¹⁵N¹⁸O and 0.4 vol.% O₂ is given in Figs. 10a and 10b, respectively. When treated in ¹⁵N¹⁸O alone, major desorption occurred at >300°C, and a small broad peak occurred at 80–260°C. In the low-temperature region, it is exclusively ¹⁶O₂. For the high-temperature peak, both ¹⁶O₂ and ¹⁶O¹⁸O are major products, while ¹⁸O₂ is minor. When treated in both 0.1 vol.% ¹⁵N¹⁸O and 0.4 vol.% O₂, it shows two desorption peaks, at 130 and 330°C. The low-temperature peak is exclusively ¹⁶O₂, while the high-temperature peak contains all three isotope products. Figure 10c shows the effect of the composition of treatment gas stream on the desorption of O₂ from Co–NaZSM-5.

FIG. 7. Desorption of different (a) N₂O isotope products from Cu–ZSM-5 zeolite catalyst during TPD after being treated in 0.2 vol.% ¹⁵N¹⁸O (100 cm³ · min⁻¹) and (b) NO₂ isotope products after being treated in 0.1 vol.% ¹⁵N¹⁸O and 0.4 vol.% O₂ (100 cm³ · min⁻¹) at 40°C for 30 min; catalyst mass: 0.2 g; flow of He: 40 cm³ · min⁻¹; ramp rate: 30°C · min⁻¹.

FIG. 8. Desorption of different (a) N_2O isotope products and (b) NO_2 isotope products from Co–ZSM-5 zeolite catalyst during TPD after being treated in 0.1 vol.% $^{15}N^{18}O$ and 0.4 vol.% O_2 (100 cm³ · min⁻¹) at 40°C for 30 min; catalyst mass: 0.2 g; flow of He: 40 cm³ · min⁻¹; ramp rate: $30^{\circ}C \cdot min^{-1}$.

DISCUSSION

Upon exposure of zeolite catalysts to either ¹⁵N¹⁸O or a mixture ¹⁵N¹⁸O and O₂, a significant amount of ¹⁵N¹⁶O was observed in the reactor effluent. This indicates that isotope exchange between ¹⁵N¹⁸O and the zeolite framework oxygen, or oxygen adsorbed on the catalyst, occurred at this low temperature. The amount of such isotope exchange varied with the catalyst. The exchange ceased when saturation adsorption was achieved, suggesting that the process occurred by adsorption of ¹⁵N¹⁸O on the zeolites. No other products were found in the effluent, suggesting that neither disproportionation to form N₂O and NO₂ nor decomposition to N₂ and O₂ were significant at this temperature. No attempts were made to quantify the degree of exchange. A detailed analysis of isotope exchange between ¹⁵N¹⁸O and the framework oxygen (16O) of Cu-ZSM-5 and Fe-MOR zeolites at high temperatures ($\sim 500^{\circ}$ C) was reported previously (4).

FIG. 9. Desorption of different O_2 isotope products from Cu–ZSM-5 zeolite catalyst during TPD after being treated in (a) 0.2 vol.% ¹⁵N¹⁸O, (b) 0.1 vol.% ¹⁵N¹⁸O and 0.4 vol.% O_2 , and (c) different treatment gas streams (100 cm³ · min⁻¹) at 40°C for 30 min; catalyst mass: 0.2 g; flow of He: 40 cm³ · min⁻¹; ramp rate: 30°C · min⁻¹.

Figures 5 and 6 show that the decomposition of NO_x measured as the formation of ${}^{15}N_2$ over Cu–NaZSM-5 and Co–NaZSM-5 is strongly affected by the composition of treatment gas streams. When treated in ${}^{15}N^{18}O$ alone, formation of ${}^{15}N_2$ is small. However, treating in a mixture of ${}^{15}N^{2}$ formation. This enhancement in the rate of ${}^{15}N_2$ formation. This enhancement cannot be explained by the adsorbed nitric oxide species because the amount and adsorption characteristics of adsorbed NO did not change much (Figs. 1 and 2), particularly, relative to the great enhancement in low-temperature activity. For Cu–NaZSM-5, the enhancement in N₂ formation rate at 130°C is increased by a factor of >4; for Co–NaZSM-5, the rate of N₂ formation at 130°C is increased by a factor of >20.

The similarity between the N_2 formation (Fig. 5) and the desorption of NO_2 (Fig. 7b) leads us to suggest that the formation of N_2 is the result of formation of NO_2 . In Fig. 5, it appears that there are two peaks at temperatures above 300°C, around 330 and 360°C. Figure 7b shows two

 NO_2 desorption peaks, at 150 and 330°C, which account for the low-temperature N_2 peak and the peak (not fully resolved) at ~330°C in Fig. 5. The high temperature at 360°C is probably due to nitric oxide as shown in Fig. 1. At high temperatures (>280°C), judging from the amounts of NO_2 , NO desorbed and the amounts of N_2 generated (Figs. 1, 5, and 7b), the activity for NO₂ decomposition is significantly higher than that for NO, roughly a factor of 4, as shown in Table 2.

For Co–NaZSM-5 catalyst, when treated in $^{15}N^{18}O$ alone, neither N_2O or NO_2 were formed. Therefore, it showed very little formation of N_2 (Fig. 6). However, when treated in both $^{15}N^{18}O$ and O_2 large amounts of N_2 formed at $<360^\circ C$. This corresponds to formation of predominantly NO_2 at $<340^\circ C$ shown in Fig. 8b.

Figures 5 and 7a show that the formation of N_2 on Cu–NaZSM-5 treated in NO alone is cocurrent with the desorption of N_2O , suggesting that the NO_x decomposition activity may be due to N_2O rather than NO. The formation of N_2 is also accompanied by the formation of O_2 and the ratio of N_2 to O_2 is roughly close to 2 to 1, as expected from N_2O decomposition.

We found that in the low-temperature region, ¹⁶O₂ is the only isotope product. This seems to contradict to the results presented in Figs. 3a and 7a, where ¹⁸O is shown to be the predominant oxygen source in both NO and N₂O species. There could be two explanations for this, one being that the isotope exchange between ¹⁸O₂ formed from decomposition of ¹⁵N₂¹⁸O undergoes fast exchange with lattice oxygen of Cu-NaZSM-5, which is predominantly ¹⁶O, the other being that the ¹⁸O formed from decomposition of ¹⁵N₂¹⁸O exchanges with lattice ¹⁶O at a much faster rate then the rate of combination of two ¹⁸O moieties. Previous work on temperature-programmed isotope exchange between gas phase ${}^{18}O_2$ and zeolite lattice oxygen or chemisorbed O_2 on Cu-NaZSM-5 zeolite catalyst by Chang et al. (5) showed that isotope exchange at temperatures below 250°C is negligible. It was found that significant amounts of lattice oxygen

	Amount of products desorbed (μ mol \cdot g ⁻¹)								
	NO		N ₂ O		NO ₂		O ₂		
Catalyst	¹⁵ N ¹⁸ O	${}^{15}\mathrm{N}{}^{18}\mathrm{O} + \mathrm{O}_2$	¹⁵ N ¹⁸ O	${}^{15}\mathrm{N}{}^{18}\mathrm{O} + \mathrm{O}_2$	¹⁵ N ¹⁸ O	$^{15}\mathrm{N}^{18}\mathrm{O} + \mathrm{O}_2$	¹⁵ N ¹⁸ O	$^{15}N^{18}O + O_2$	
Co-NaZSM-5	69.6 ^a	74.6	0	1.8	0	115.8	2.2	19.4	
	10.4 ^{<i>b</i>}	42.3	0	0.2	0	8.5	9.3	30.4	
Cu-NaZSM-5	49.2 ^a	43.6	4.1	0	0	38.7	1.2	12.2	
	14.4 ^b	98.4	0	0	0	8.4	23.5	153.3	

Composition of Adsorbed NO_x Species on Cu-NaZSM-5 and Co-NaZSM-5 Catalysts

Note. Catalyst mass: 0.2 g; NO-treated: 0.2 vol.% $^{15}N^{18}O$ at 100 cm³/min; NO + O_2 treated: 0.1 vol.% $^{15}N^{18}O$ and 0.4 vol.% O_2 at 100 cm³/min; TPD: heating rate: 30°C/min in He at 40 cm³/min.

^a Desorbed at <280°C.

^b Desorbed at $>280^{\circ}$ C.

could be exchanged with gas phase ${}^{18}O_2$ but at higher temperature (>250°C). Both doubly exchanged ${}^{16}O_2$ and singly exchanged ${}^{16}O{}^{18}O$ were formed. It has been suggested (6) that for transition metal oxides isotope exchanges between gas phase oxygen and lattice oxygen involving two oxygen atoms from surface oxide predominate. Such an exchange occurs by virtue of dissociative adsorption of dioxygen followed by desorption of molecules with modified isotope composition and requires high temperatures (>250°C). In any case, it is unlikely that at low temperatures (<250°C), the lack of ${}^{18}O_2$ or ${}^{16}O_1{}^{18}O$ as products is caused by isotope exchange between ${}^{18}O_2$ formed and lattice oxygen (${}^{16}O_1$).

In ZSM-5 zeolite, all its lattice oxygens (either bridging an aluminum atom and a silicon or two silicon atoms) may be treated as surface oxygens because they all are accessible to incoming molecules. Thus, if the surface ¹⁶O and ¹⁸O mix rapidly enough, the isotope composition of desorbed molecules corresponds to the ratio of the surface concentration of isotopes. To estimate surface population of ¹⁶O and ¹⁸O on the catalyst surface amounts of ¹⁸O and ¹⁶O adsorbed on Cu–NaZSM-5 and Cu–NaZSM-5, catalysts measured as No, N₂O, NO₂, and O₂ are given in Table 3. The surface of Cu-NaZSM-5 after being treated in ¹⁵N¹⁸O alone in populated with roughly the same amount of ¹⁶O (54.5 μ mol g⁻¹) and ¹⁸O (58.4 μ mol g⁻¹); however, a predominant amount (40 μ mol g⁻¹) of the ¹⁶O is in the form of ¹⁶O₂ which is unable to participate in the isotope exchange at low temperature. In effect, it is much more heavily populated by exchangeable ¹⁸O than by ¹⁶O. Thus, we should expect to see more ¹⁸O-rich O₂ products. This is in contradiction with exclusive formation of ¹⁶O₂ which we observed (Fig. 9a). This is because the amount of oxygen adsorbed on the surface only accounts for a very small fraction of the total oxygen available for isotope exchange which is the sum of adsorbed and zeolite lattice oxygen. The latter is estimated as $3.317 \times 10^4 \,\mu \text{mol} \cdot \text{g}^{-1}$. Although we do not have an exact measurement of how much lattice ¹⁶O is exchanged by ¹⁸O, based on the pretreatment condition (40°C) used in our experiments, it is estimated significantly below 1%, implying that the surface actually is predominantly ¹⁶O (>99%). Also, given the low concentration of $^{15}N_2^{18}O$ on the surface, the concentration of ¹⁸O formed from ${}^{15}N_2{}^{18}O$

	TPD results						
Catalyst	$\begin{tabular}{c} Max. N_2 \\ formation \\ (\mu mol \cdot g^{-1} \cdot s^{-1}) \end{tabular}$	$\begin{array}{c} TOF \times 10^{3} \\ (molec \cdot M^{-1} \cdot \ s^{-1})^{b} \end{array}$	Max. conversion (%)	Temperature (°C)			
Cu-NaZSM-5-107	0.042	0.288	29.6 (NO ₂)	122			
	0.033	0.227	30.6 (NO ₂)	335			
	0.025	0.172	8.3 (NO)	365			
Co-NaZSM-5-97	0.092	0.686	23.5 (NO ₂)	130			
	0.015	0.112	23.1 (NO ₂)	320			

 TABLE 2

 Summary of NO Decomposition Results Obtained from TPD Measurements^a

^aTPD: 0.2 g catalyst, He: 40 cm³ · min⁻¹, ramp rate: 30° C · min⁻¹; catalyst pretreated in 0.1 vol.% ¹⁵N¹⁸O and 0.4 vol.% O₂ at 40°C for 30 min (flow rate: 100 cm³ · min⁻¹).

^b TOF: turnover frequency number of NO_x molecules converted per metal site per second.

FIG. 10. Desorption of different O₂ isotope products from Co–ZSM-5 zeolite catalyst during TPD after being treated in (a) 0.2 vol.% $^{15}\mathrm{N}^{18}\mathrm{O}$, (b) 0.1 vol.% $^{15}\mathrm{N}^{18}\mathrm{O}$ and 0.4 vol.% O₂, and (c) different treatment gas streams (100 cm³ · min⁻¹) at 40°C for 30 min; catalyst mass: 0.2 g; flow of He: 40 cm³ · min⁻¹; ramp rate: 30°C · min⁻¹.

decomposition is very low, which makes combination of two ^{18}O to form $^{18}\text{O}_2$ less competitive than exchange with lattice oxygen ^{16}O . This results in formation of $^{16}\text{O}_2$ rather than $^{18}\text{O}_2$. Therefore, the formation of $^{16}\text{O}_2$ from decomposition of $^{15}\text{N}_2{}^{18}\text{O}$ at temperatures below 250°C is a result of kinetics.

The above arguments are only applicable to low temperatures (below 250°C). At high temperatures, due to the participation of ${}^{16}O_2$ in the oxygen isotope exchange processes isotope product distribution becomes complex. Table 3 shows that amounts of adsorbed surface ${}^{16}O$ and ${}^{18}O$ are drastically increased when catalysts are treated in both ${}^{15}N^{18}O$ and O_2 . Due to substantial increases in surface concentration of ${}^{16}O$ and ${}^{18}O$ (e.g., $360 \ \mu \text{mol} \cdot \text{g}^{-1} \, {}^{16}O$ and $246 \ \mu \text{mol} \cdot \text{g}^{-1} \, {}^{18}O$ for Cu–NaZSM-5 treated in 0.1 vol.% ${}^{15}N^{18}O$ and 0.4 vol.% O_2), rates of recombination of two adsorbed surface oxygens to form O_2 become significant rela-

tive to rates of exchange with lattice oxygen, which results in a distribution of different isotope O_2 products reflecting the surface population of ¹⁶O and ¹⁸O.

Results from both Cu–NaZSM-5 and Co–NaZSM-5 show unambiguously that the NO_x decomposition activity observed at low temperatures ($<340^{\circ}$ C) is solely due to decomposition of N₂O when treated in ¹⁵N¹⁸O alone or

TABLE 3

Summary of TPD Results of Different Zeolite Catalysts Treated Either in ¹⁵N¹⁸O Alone or in Both ¹⁵N¹⁸O with ¹⁶O₂ at 40°C

		Amount of oxygen desorbed $(\mu mol \cdot g^{-1})$							
		as NO		as N ₂ O		as NO ₂		as O ₂	
Catalyst	Treated in	¹⁶ O	¹⁸ O	¹⁶ O	¹⁸ O	¹⁶ O	¹⁸ O	¹⁶ O	¹⁸ O
Cu-NaZSM-5	$^{15}N^{18}O$ $^{15}N^{18}O + O_{2}$	3.9 ^{<i>a</i>} : 8.1 ^{<i>b</i>} 38: 56.5	40:7.6 38:42.5	0:0 0:0	4.1:0 0:0	0:0 39:11.5	0:0 39:11	2.5:40.0 24:191	0.3:6.4 0:116
Co-NaZSM-5	$^{15}N^{18}O$ $^{15}N^{18}O + O_2$	12:7 83:27	51:3 83:25	0:0 0.9:0	0:0 0.9:0	0:0 116.5:8	0:0 116:8	3:14.2 36.5:41	0.2 : 4 4.5 : 26.5

Note. Catalyst mass: 0.2 g: NO-treated: 0.2 vol.% $^{15}N^{18}O$ at 100 cm³/min; NO + O₂ treated: 0.1 vol.% $^{15}N^{18}O$ and 0.4 vol.% O₂ at 100 cm³/min; TPD: heating rate: 30°C/min in He at 40 cm³/min.

^{*a*} Desorbed at \leq 280°C.

^b Desorbed at $> 280^{\circ}$ C.

NO₂ when treated in both ¹⁵N¹⁸O and O₂ but not much from direct decomposition of NO. This is in agreement with previous results that Cu–ZSM-5 is only active for NO decomposition at high temperatures (>350°C) and Co–ZSM-5 is not capable of decomposing NO. The combination of NO₂ formation at low temperature during adsorption treatment and subsequent decomposition at temperatures (130–330°C) much lower than that required for NO on Cu–NaZSM-5 (>350°C) demonstrates that significant conversion of NO_x can be achieved. This approach may be an effective way to reduce NO emission from automotive exhaust using transition metal containing ZSM-5 catalysts.

The formation of NO₂ under NO decomposition conditions over Cu–ZSM-5 zeolites was also studied by Ciambelli *et al.* (7). They found that homogeneous oxidation of NO by O₂ to form NO₂ is negligible in a wide temperature range 150–550°C. Above 300°C the catalytic activity was high enough to give the equilibrium conversion of NO to NO₂, whereas at lower temperatures (<300°C) the rate of catalytic reaction was very low, limiting conversion of NO to NO₂. They also reported formation of NO₂ in the absence of added O₂ at high temperatures (>300°C). Our results show that in the absence of O₂ no formation of NO₂ occurs.

Previously, it was concluded by Shelef *et al.* (8) that H–ZSM-5, Cu–ZSM-5, and Cu/Al₂O₃ were capable of oxidizing NO to NO₂ and, more importantly, that the catalyst which has the highest activity for NO oxidation to NO₂ also has the highest activity for NO decomposition. Here, our detailed isotope labeling results provide unambiguous evidence that the NO_x decomposition activity of Cu–NaZSM-5 zeolites is largely due to decomposition of NO₂ or N₂O, not direct decomposition of NO. Decomposition of NO over Cu–NaZSM-5 only becomes significant at high temperatures (>350°C). More importantly, Co–NaZSM-5, an inactive catalyst for direct NO decomposition, is highly active for NO_x reduction via NO₂ intermediates at very low temperatures (<200°C).

Results presented in Figs. 5 and 9 show that desorption of N₂ is accompanied by desorption of O₂ on Cu–NaZSM-5 treated in ¹⁵N¹⁸O alone, and the ratio of N₂ to O₂ is close to 2. This, together with the N₂O peak at 150°C (Fig. 7a), suggests that stoichiometric decomposition of N₂O to N₂ and O₂ is responsible for the NO_x decomposition activity. It ought to be pointed out that no NO₂ formation was observed. Previously, others (9) suggested that lack of NO₂ during TPD is a result of its decomposition at high temperature (>300°C). However, in our experiments, we observed desorption of large amounts of NO₂ at both low temperature (160°C) and high temperature (335°C) (see Fig. 7b) over Cu–NaZSM-5, and multipeak at 140–200°C over Co–NaZSM-5 (Fig. 8b) when they are treated in a mixture of ¹⁵N¹⁸O and O₂. It is obvious that formation of N₂ is via N₂O. It is unlikely that

 N_2O was formed by disproportionation reaction suggested by others (7, 9) since we did not observe any significant formation of NO_2 .

Based on infrared spectroscopy results, Aylor *et al.* (10) postulate a pathway involving a dinitrosyl $Cu^+(NO)_2$ intermediate, which decomposes to give N_2O , leaving an oxygen on Cu to form $Cu^{2+}O^-$. The mechanism proposed by these authors can also be used to explain why there is only one N_2O isotope product observed (Fig. 7a). The mechanism is given in Scheme I.

Clearly, formation of N_2O requires the active metal site capable of undergoing a redox cycle. This may also explain why no formation of N_2O occurs on Co–NaZSM-5 because Co^{2+} in ZSM-5 cannot undergo Co^{2+}/Co^+ cycling under conditions typical to ours.

For both Co–NaZSM-5 and Cu–NaZSM-5 catalysts, the formation of N₂O and NO₂ was very small when treated in ¹⁵N¹⁸O alone. However, treatment in the gas stream containing both ¹⁵N¹⁸O and O₂ resulted in formation of large amount of NO₂s (¹⁵N¹⁸O₂, ¹⁵N¹⁶O₂, ¹⁵N¹⁶O¹⁸O). This is in agreement with other studies finding that oxidation of NO by O₂ to form NO₂ is effectively catalyzed by H–ZSM-5 (11), H–MOR, Fe–MOR, Cu–MOR (12), and Cu–ZSM-5 (13) at relatively low temperature, e.g., room temperature. Cu–NaZSM-5 showed two major NO₂ desorption peaks at <300°C and >300°C (Fig. 7b) whereas Co–NaZSM-5 (Fig. 8b) showed basically a predominant peak at <300°C and a small shoulder at >300°C.

Similarity in TPD characteristics and equal distribution of two NO isotope products (Figs. 3b and 4b) and

SCHEME II

identical TPD characteristics of different NO₂ isotope products (Figs. 7b and 8b) and an isotope distribution of $[^{15}N^{16}O^{18}O] = 2 [^{15}N^{16}O_2] = 2 [^{15}N^{18}O_2]$ leads us to suggest that co-adsorption of ¹⁵N¹⁸O and O₂ over Cu-NaZSM-5 and Co-NaZSM-5 results in formation of a reaction intermediate which has the characteristic of adsorbed "N2O4" on transition metal cations (see Scheme II, where M^{2+} represents Cu^{2+} or Co^{2+}). The four oxygen atoms in the adsorbed "N₂O₄" have two ¹⁸O which come from two ¹⁵N¹⁸O and two ${}^{16}O$ which come from ${}^{16}O_2$ and they all are chemically indistinguishable. Consequently, breaking the N-N bond will generate either two ¹⁵N¹⁶O¹⁸O or one ¹⁵N¹⁶O₂ and one ¹⁵N¹⁸O₂. Because all N-O bondings are identical the probabilities for both decomposition modes are equal, resulting in $[{}^{15}N{}^{16}O{}^{18}O] = 2 [{}^{15}N{}^{16}O{}_{2}] = 2 [{}^{15}N{}^{18}O{}_{2}]$. Likewise, further decomposition to form NO and oxygen always generates equal amounts of ¹⁵N¹⁸O and ¹⁵N¹⁶O. In the gas phase, N_2O_4 is stable up to 140°C (14). It has a planar structure (symmetry D_{2h}). Another point that supports the formation of "N₂O₄" intermediate is the dramatic increase in amounts of NO and O2 adsorbed when treated in NO and O_2 is the result of formation of NO_x complex not due to individual NO or O₂ because neither Cu-NaZSM-5 nor Co-NaZSM-5 adsorbs significant O₂ when treated in O₂ alone.

The enhancement of NO_x adsorption by zeolites in the presence of O₂ was also observed by others. For instance, it was reported that the uptake of NO_x by Na–ZSM-5, Na–Y, and Cu–ZSM-5 zeolite catalysts was enhanced by co-adsorbing NO and NO₂ or NO and O₂ (3). The same authors also concluded that the formation of NO_x is facilitated by the zeolite structure, not by the presence of Cu²⁺ though the adsorbed quantities are enhanced by Cu. Further, they postulated the NO_x intermediates are N₂O₃.

TPD results summarized in Table 1 show that the composition of NO_x species formed on both catalysts is complex. When treated in ¹⁵N¹⁸O alone, NO and a very small amount of N₂O are the only NO_x species observed, suggesting a composition close to NO. However, when treated in a mixture of NO and O₂, large amounts of NO₂, NO, and O₂ are adsorbed, resulting in a composition close to N₂O₃ on Co–ZSM-5 and NO₂ on Cu–ZSM-5.

The TPD of oxidized Cu–NaZSM-5 (Fig. 9c) shows two small low-temperature peaks at 80 and 170°C and a major peak at 430°C. The two low-temperature peaks at <200°Care also observed by Teraoka *et al.* (15) and Valyon and Hall (16). Roughly, an amount of 0.2 O/Cu oxygen is released from our Cu–NaZSM-5 catalyst, which is in agreement with others (16). Similar experiments revealed that desorption of O₂ from Co–NaZSM-5 is negligible.

Our TPD (Fig. 2) showed a major amount of desorption at temperatures below 400°C and a lack of any significant desorption at temperatures above 400°C. This feature is similar to that reported by Li and Armor (17) but the detailed desorption features are quite different. On a weight basis, our catalyst adsorbs less than half what was adsorbed on their catalyst, and more importantly, they observed more low-temperature adsorption states (at 85, 160, 225, 300, and 385°C) than ours.

CONCLUSIONS

Co-adsorption of NO and O₂ leads to substantial enhancement in the amount of NO_x adsorbed on the catalysts for both Cu- and Co-NaZSM-5 catalysts. The presence of O₂ is essential during the formation of NO_x intermediates for higher NO_x decomposition activity. We have demonstrated that the low-temperature ($<330^{\circ}$ C) NO_x decomposition activity observed for both Cu-NaZSM-5 and Co-NaZSM-5 catalysts is mostly due to formation of NO₂ on the catalyst surface. Direct decomposition of NO does not occur on Co-NaZSM-5. It requires high

temperatures (>350°C) on Cu–NaZSM-5. Adsorption of NO on Cu–NaZSM-5 also leads to some formation of N₂. This is the result of N₂O formation. In terms of N₂ formation, Co–NaZSM-5 is about 2–3 times more active than Cu–NaZSM-5 at low temperatures (<200°C). For Cu–NaZSM-5, its activity for NO₂ decomposition is approximately 4 times higher than that for NO at 320–370°C. Despite its inability of direct NO decomposition, Co–NaZSM-5 shows good activity for NO₂ decomposition, comparable to that of Cu–NaZSM-5.

ACKNOWLEDGMENTS

This work was partly supported by the U.S. Department of Energy, under Contract DE-FG03-94ER81772/A000, and by Goremotive Industries, Inc.

REFERENCES

- 1. Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S., and Kagawa, S., *J. Chem. Soc. Chem. Commun.*, 1272 (1986).
- 2. Li, Y., and Armor, J. N., J. Catal. 150, 376 (1994).

- Adelman, B. J., Lei, G.-D., and Sachtler, W. M. H., *Catal. Lett.* 28, 119 (1994).
- Valyon, J., Millman, W. S., and Hall, W. K., Catal. Lett. 24, 215 (1994).
- 5. Chang, Y.-F., Somorjai, G. A., and Heinemann, H., J. Catal. 154, 24 (1995).
- 6. Winter, E. R. S., J. Chem. Soc., 2889 (1968).
- Ciambelli, P., Minelli, G., Moretti, G., Pirone, R., Porta, P., and Russo, G., *in* "Environmental Catalysis" (G. Centi, C. Critiani, P. Forzatti, and S. Perathoner, Eds.), p. 295. Societa' Chimica Italiana, Rome, 1995.
- 8. Shelef, M., Montreuil, C. N., and Jen, H. W., Catal. Lett. 26, 277 (1994).
- 9. Li, Y., and Armor, J. N., Appl. Catal. 76, L1 (1991).
- Aylor, A. W., Larsen, S. C., Reimer, J. A., and Bell, A. T., *J. Catal.* 157, 592 (1995).
- 11. Halasz, I., Brenner, A., and Ng, K. Y. S., Catal. Lett. 34, 151 (1995).
- Odenbrand, C. U. I., Andersson, L. A. H., Brandin, J. G. M., and Jaras, S., *Catal. Today* 4, 155 (1989).
- Ansell, G. P., Diwell, A. F., Golunski, S. E., Hayes, J. W., Rajaram, R. R., Truex, T. J., and Walker, A. P., *Appl. Catal.* 2, 81 (1993).
- Cotton, F. A., and Wilkinson, G., "Advanced Inorganic Chemistry," 5th ed., p. 320. Wiley, New York, 1988.
- Teraoka, Y., Tai, C., Furukawa, H., Kagawa, S., Asakura, K., and Iwasawa, Y., Shokubai 32, 426 (1990).
- 16. Valyon, J., and Hall, W. K., J. Catal. 143, 520 (1993).
- 17. Li, Y., and Armor, J. N., Appl. Catal. 5, L257 (1995).